• ru
  • en

News

NEWS FROM THE WORLD OF AE AND LIFE OF OUR COMPANY
Our publications in 2022

Our publications in 2022

09.01.2023

List of publications in 2022, in which our employees participated:

V. Barat, A. Marchenkov, V. Bardakov, D. Zhgut, M. Karpova, T. Balandin, S. Elizarov. Assessment of the Structural State of Dissimilar Welded Joints by the Acoustic Emission Method. Appl. Sci. 2022, 12(14), 7213. https://www.mdpi.com/2076-3417/12/14/7213 (full text). DOI: 10.3390/app12147213

Abstract In this study, we investigated defect detection in dissimilar welded joints by the acoustic emission (AE) method. The study objects were carbide and decarburized interlayers, which are formed at the fusion boundary between austenitic and pearlitic steels. Diffusion interlayers, as a structural defect, usually have microscopic dimensions and cannot be detected using conventional non-destructive testing (NDT) methods. In this regard, the AE method is a promising approach to diagnose metal objects with a complex structure and to detect microscopic defects. In this paper, the AE signatures obtained from testing defect-free specimens and specimens with diffusion interlayers are analyzed. We found that the AE signature for defective and defect-free welded joints has significant differences, which makes it possible to identify descriptors corresponding to the presence of diffusion interlayers in dissimilar welded joints.

 

V. Barat, A. Marchenkov, V. Bardakov, D. Zghut, M. Karpova, S. Elizarov. Diagnostics of Dissimilar Weld Joints of Austenitic to Pearlitic Steels by Acoustic Emission. J. Inst. Eng. India Ser. D. 2022. DOI: 10.1007/s40033-022-00409-y

Abstract Dissimilar welded joints are widely used nowadays in power engineering industry for manufacturing of pipelines and other power equipment elements. Diagnostics of welding defects in these joints by nondestructive testing (NDT) is quite difficult, since high gradients of chemical composition and microstructure reduce the sensitivity of traditional NDT scanning methods. The paper is devoted to the study of the possibility of AE method application for diagnostics of dissimilar welded joints of pearlitic to austenitic steel. The identification of defects lack of penetration and microstructure defects in the form of diffusion interlayers under cyclic tensile loading of flat specimens with welded joints is considered. As a result of the research, it was found that dissimilar welded joints containing defects are characterized by a specific AE signature. It was established that for welded specimens with lack of penetration and diffusion interlayers, the AE activity turned out to be significantly higher than for defect-free ones. Herewith, specimens with diffusion interlayers are characterized by large amplitude values (up to 70–80 dB), and specimens with lack of penetration are characterized by higher AE activity, while the amplitudes of AE hits did not exceed 60–65 dB. The results obtained can be used for determination of diagnostic criteria for detecting defects by AE method and subsequent development of an industrial NDT technique for dissimilar welded joints under study.

 

V. Barat, A. Marchenkov, S. Ushanov, V. Bardakov, S. Elizarov. Investigation of Acoustic Emission of Cracks in Rails under Loading Close to Operational. Appl. Sci. 2022, 12(22), 11670. https://www.mdpi.com/2076-3417/12/22/11670 (full text). DOI: 10.3390/app122211670

Abstract The paper is devoted to the study of the possibility of detecting cracks in railway rails by the acoustic emission (AE) method. An experimental study of AE signals under cyclic compression loading of rail fragments, which simulates the rail operating load, has been carried out. Fragments of rails without defects, as well as fragments containing pre-grown fatigue cracks, were studied. It was found that AE signals generated by a rail with a crack have higher activity compared to signals from defect-free specimens. It is shown that the AE signals during the loading of defect-free specimens have a short duration and low amplitude and may be caused by the deformation of non-metallic inclusions. The crack presence leads to an increase in the AE hits rate and changes the nature of the distribution of the AE hits amplitudes. It is shown that the crack location has no effect on the reliability of its detection by the AE method. Criteria of crack detection by AE testing are offered as a result of this study.

 

A. Machikhin, A. Poroykov, V. Bardakov, A. Marchenkov, D. Zhgut, M. Sharikova, V. Barat, N. Meleshko, A. Kren. Combined Acoustic Emission and Digital Image Correlation for Early Detection and Measurement of Fatigue Cracks in Rails and Train Parts under Dynamic Loading. Sensors 2022, 22(23), 9256. https://www.mdpi.com/1424-8220/22/23/9256 (full text). DOI: 10.3390/s22239256

Abstract Fatigue crack in rails and cyclic-loaded train parts is a contributory factor in multiple railroad accidents. We address the problem of crack detection and measurement at early stages, when total failure has not yet occurred. We propose to combine acoustic emission (AE) testing for prediction of crack growth with digital image correlation (DIC) for its accurate quantitative characterization. In this study, we imitated fatigue crack appearance and growth in samples of railway rail and two train parts by cyclic loading, and applied these two techniques for inspection. Experimental results clearly indicate the efficiency of AE in the early detection of fatigue cracks, and excellent DIC capabilities in terms of geometrical measurements. Combination of these techniques reveals a promising basis for real-time and non-destructive monitoring of rails and train parts.

 

Y. A. Eliovich, V. A. Barat, V. V. Bardakov, A. Y. Marchenkov, D. D. Khokhlov and D. A. Zhgut. Predictive Analysis of Structural Changes in Paratellurite Crystals Using the Acoustic Emission Method. International Conference on Information, Control, and Communication Technologies (ICCT), 2022, pp. 1-5. DOI: 10.1109/ICCT56057.2022.9976555

Abstract Paratellurite TeO 2 crystals of various degrees of defectiveness were studied under external mechanical loading. The results of structural changes in crystals were obtained by capturing acoustic emission data and polarized optical microscopy observation. Peculiarities of acoustic emission corresponding to defects of various types in crystals are revealed. It has been experimentally shown that acoustic emission monitoring of a mechanically loaded paratellurite makes it possible to assess its structure degree of defectiveness even in the elastic zone. Thus, the possibility of irreversible deformation process also can be predicted.