111024, Moscow, Shosse Entusiastov, 20B, POB 140

Tel.: +7 (495) 361-76-73, 361-19-90, 707-12-94
E-mail: sales@interunis-it.ru

© 2025 Интерюнис-ИТ. All rights reserved.
Site development: АРТ Информэкспресс

News

NEWS FROM THE WORLD OF AE AND LIFE OF OUR COMPANY
Our portfolio in 2013

List of publications in 2014, in which our clients describe examples of the use of our company's products:

A. M. Golosov, V. V. Makarov (School of Engineering, Far Eastern Federal University). The system of reliable deformational precursors of highly stressed rock samples failure. FEFU: School of Engineering Bulletin. 2013. No 4(17). P. 90-102. https://www.dvfu.ru/upload/medialibrary/d7f/2013-4-13.pdf (полный текст). eLibrary ID: 21329470 (full text)

Abstract Phenomena of anomalous deformation of rocks compressed up to failure have been studied in the laboratory on rock samples. A system of reliable deformational precursors of the failure stage has been developed. The system includes long-term, middle-term and short-term precursors. The threshold of dilatancy and the turning point of deformational curve are recognized as long-term precursor. The middle-term precursor is determined as a point of the increment sign change of the specific volume deformation. The short-term precursor is characterized by the specific volume deformation increments jump. The acoustic emission research method had been used to control the deformational and failure process. There was a tight correlation between the deformational precursors system of failure and the mesocracking process under the loading. Mathematical model of self equilibrium stresses had been successfully used to describe the anomalous deformations distribution.

 

Botvina L.R., Levin V.P., Tyutin M.R., Zharkova N.A., Dobatkin S.V., Morozov A.V., Ozerskii O.N. Wear mechanisms of structural steels and effect of wear on their mechanical and acoustic properties during tension. Journal of Friction and Wear. 2013. Vol. 34. No 1. P. 6-13. DOI 10.3103/S1068366613010030. eLibrary ID: 20432676

Abstract Optical and scanning electron microscopy have been used to study the wear mechanisms of structural steels with various structures and strengths, as well as to assess their mechanical and acoustic properties after friction. The prevailing wear mechanisms have been revealed; they are governed by the strength and structure of the steels and involve the refinement and rotation of grains, the formation of parallel rows of microcracks, the strain dissolution of cementite, and martensitic transformation, as well as the formation of seizure sites in the friction contact zone, shear and intergranular pores, and microcracks. The low-carbon steel with a ultrafine-grained structure has demonstrated a high wear resistance. Friction for 3000 h had a weak effect on the mechanical properties of the steels during tension.

 

S. I. Builo, P. G. Ivanochkin, N. A. Myasnikova (Vorovich Research Institute of Mechanics and Applied Mathematics, Southern Federal University; Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don; Rostov State Transport University, Rostov-on-Don). Diagnostics of critical points of the friction coefficient of a multilayer nanomodified antifriction coating by an acoustic emission technique. Russian Journal of Nondestructive Testing. 2013. Vol. 49. No 6. P. 318-322. DOI 10.1134/S1061830913060028. eLibrary ID: 21878765

Abstract The dynamics of the changing parameter of the acoustic emission (AE) in the course of tests of a multilayer nanomodified antifriction coating are considered. The results of investigating the shape and the spectra of AE pulses in different regions of the experimental curve of the dependence of the friction coefficient on the test time are reported. A method is proposed for establishing the transition points from the steady-state stage to the failure and friction-without-coating stages according to the intensity of the restored AE event stream, the spectral distribution, and the amplitude of the concurrent acoustic emission in the ultrasonic-frequency range.

 

Makhutov N.A., Fomin A.V., Ivanov V.I., Permyakov V.N., Vasil’ev I.E. Integrated diagnostics of limit states and early warning of emergency conditions of structures. Journal of Machinery Manufacture and Reliability. 2013. Vol. 42. No 2. P. 109-113. DOI 10.3103/S105261881302009X. eLibrary ID: 26912438

Abstract The new nondestructive testing technique for diagnostics of limit states and early warning of structural failure possibilities based on using oxide strain indicators and an acoustic emission system is presented. Refinement of the technique was carried out by tensile testing of samples made of B95 alloy.

 

Permjakov V.N., Chijanov E.V., Grebnev A.N., Sidel'nikov S.N. Deformation and stress analysis method. Russian patent №2492463 (2013). eLibrary ID: 37516001

Abstract Field: electricity. Substance: brittle strain-sensitive coating is deposited on the surface of an article; the coating is hardened; the article is loaded and the area and direction of plastic deformations are determined from the formed cracks using acoustic emission sensors. The brittle strain-sensitive coating used is a caramel-based coating made from a mixture containing water and sugar, with the following ratio of components, wt %: water 65-75, sugar 25-35. Effect: enabling determination of stress and deformation using brittle coatings, eliminating harmful effect on the environment.

 

V. L. Shkuratnik, P. V. Nikolenko. Using acoustic emission memory of composites in critical stress control in rock masses. Journal of Mining Science. 2013. Vol. 49. No 4. P. 544-549. DOI 10.1134/S1062739149040035. eLibrary ID: 21903074

Abstract The regular patterns of initiation and show of acoustic emission memory effect in a composite are experimentally obtained from tests on cloth laminate. The authors illustrate the capacity of cloth laminate as an absolute sensitive stress-to-acoustic emission converter. The designed and tested in-hole sensor enclosing this converter indicates when incremental stress surpasses a pre-assigned critical limit.

 

Shkuratnik V.L., Nikolenko P.V., Korchak A.V. Method to determine variation of stressed condition of rock massif. Russian patent № 2485314 (2013). eLibrary ID: 37512080

Abstract Field: mining. Substance: method includes installation of a cylindrical acoustic line in a well, reception and analysis of parameters of ultrasonic signals that spread in it. Previously on the acoustic line coaxially with it and at a certain distance from each other, at least two textolite rings are fixed, the inner diameter of which matches the diameter of the acoustic line, and the outer one – the well diameter. Each of them is exposed to individual level of mechanical loading in identical direction matching the diameter. At the same time the acoustic line is placed in the well so that this direction matches the direction of maximum primary stress in the massif. Variation of stressed condition is seen by spasmodic increase of growth steepness of total count of ultrasonic signals of acoustic emission arising in textolite rings received from the acoustic line. Effect: provision of high sensitivity and production of quantitative estimates when determining variation of stressed condition of rock massif.

 

Shkuratnik V.L., Nikolenko P.V., Ruban A.D., Kormnov A.A. Method to determine stresses in rock massif. Russian patent № 2478785 (2013). eLibrary ID: 37508575

Abstract Field: mining. Substance: method is based on using an acoustic emission memory effect in composite materials. A measurement device is formed by means of installation of two packets in a measurement well, between which epoxide resin is injected with a hardener and a filler of quartz sand. After resin hardening and completion of massif recovery deformations, the device is drilled with a circular slot, removed from the massif and cut into even discs. Produced discs are tested at press equipment under conditions of uniaxial compression with simultaneous registration of total count of impulses of acoustic emission, besides, each subsequent disc is turned by a fixed angle. As a result of tests the dependence is identified with maximum increase of acoustic emission count speed steepness as a certain level of test load is achieved, and on the basis of this level the maximum stress available in the massif is identified, and on the basis of the disc rotation angle the azimuthal angle of the specified stress action is determined. Effect: higher accuracy and reduced labour intensiveness of detection of value and direction of maximum stress in a massif, acting in plane of orthogonal axis of a measurement well.

 

Shkuratnik V.L., Novikov E.A. Method of controlling quality of materials by acoustic emission. Russian patent № 2478947 (2013). eLibrary ID: 37508636

Abstract Field: physics. Substance: loading is carried out and signals arising from acoustic emission are detected, from which presence of crack-like defects is determined, wherein the material is loaded by heating in a temperature range from 30°C to 200°C; the activity envelope of resultant acoustic emission signals is selected and presence of crack-like defects is determined from the presence of extremum values of said envelope of not less than one and a half times greater than the value of the envelope at boundaries of said temperature range. Effect: high reliability and easier detection of crack-like defects in rocky geomaterials.

 

Shkuratnik V.L., Novikov E.A. Method of inspecting quality of sample material by acoustic emission. Russian patent № 2494389 (2013). eLibrary ID: 37517032

Abstract Field: physics. Substance: sample is subjected to thermal action with rising temperature and resultant acoustic emission signals in the sample are detected, wherein the thermal action is applied to a series of same-type samples made from the same material to temperature of 90°C and for each sample, the average value of acoustic emission activity in the 30-90°C range is determined; each of the series of samples is subjected to monoaxial mechanical loading, results of which are used to determine its ultimate compression strength; a calibration curve is plotted, which describes the relationship between the average acoustic emission activity and the ultimate compression strength of the material for the entire series of test samples, from which strength of the material of retested samples of the same type is determined from their average thermoacoustic emission activity in the range from 30°C to 90°C. Effect: enabling determination of the ultimate strength of hard rock samples without destruction thereof.

 

Shkuratnik V.L., Novikov E.A., Kormnov A.A. Acoustic emission method of controlling quality of materials on samples. Russian patent № 2492464 (2013). eLibrary ID: 37516002

Abstract Field: physics. Substance: mechanical stress is generated by heating a local region of a sample lying equidistant from its top and bottom end surfaces and parallel thereto to 90°C; acoustic emission signals propagating from the heated local region are received at each of said surfaces; curves of total count of said signals versus time are plotted, on which values corresponding to the time when the rise of said curves stops are selected, and the ratio of least value to the greatest value is used to determine presence of crack defects and location thereof relative the heated local region. Effect: high reliability and easier detection of crack defects in samples of rock geomaterials, enabling estimation of the location of said defects relative the centre of the sample.